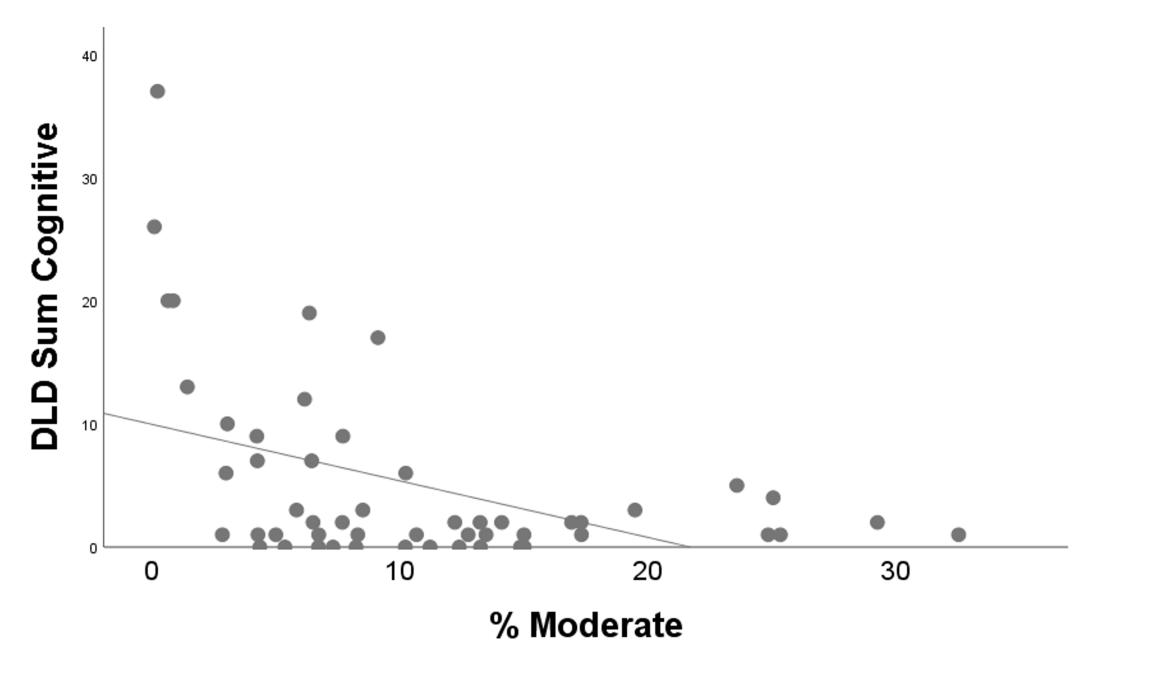
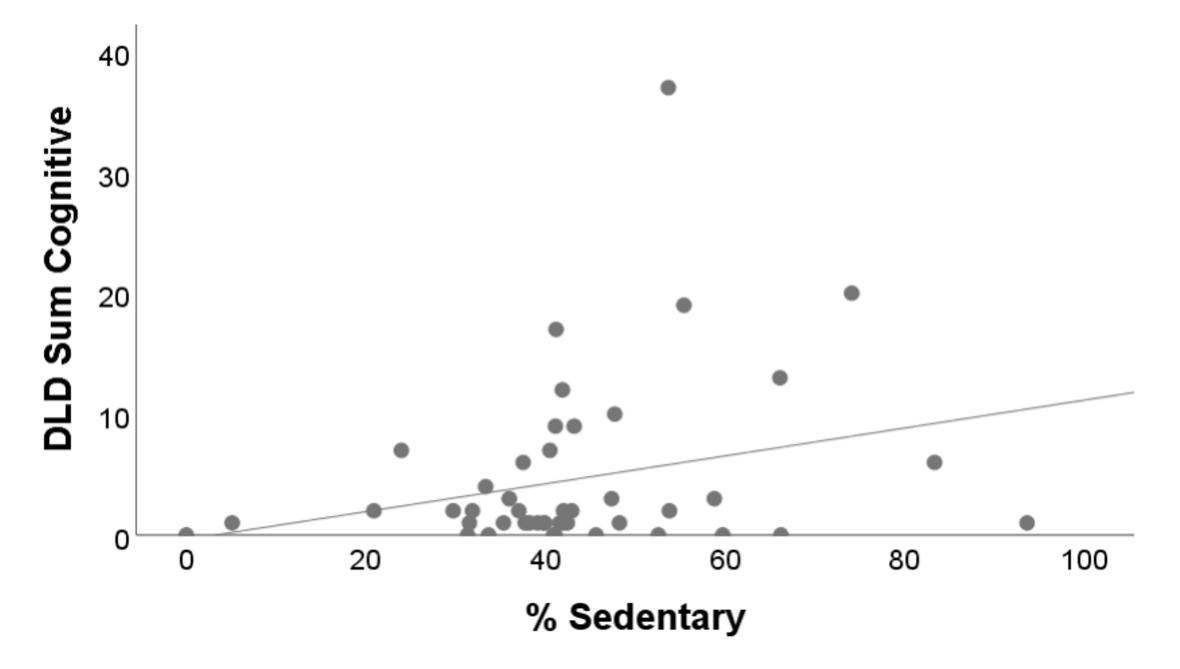
Physical Activity, Cognitive Functioning, and Amyloid-\(\beta \) in Adults with Down Syndrome

Victoria Fleming, Brianna Gambetti, Kimberly Drastal, Bradley Christian, Benjamin Handen, and Sigan Hartley Waisman Center, University of Wisconsin-Madison, University of Pittsburgh Medical Center

Introduction


- Adults with Down Syndrome (DS)
 are at high risk for developing
 Alzheimer's Disease (AD)
- This high risk is attributed to the overproduction of amyloid beta(Aβ), due to the triplication of the APP gene on chromosome 21
- Despite this genetic risk, there is variability in the age of onset of AD in the DS population
- Modifiable lifestyle factors, such as physical activity, may contribute to this variability.
- The goal of the current study was to examine the association between physical activity, cognitive functioning, and PET Aβ in nondemented adults with DS


Methods

- 52 non-demented adults with DS, who were part of the Alzheimer Biomarker Consortium in Down Syndrome (ABC-DS)
- Wrist-worn actigraph accelerometer for 7-days
- Half were male (n=26); aged 25 to
 55 years (M = 38, SD = 8.4)
- Cognitive functioning was assessed via directly-administered measures
- Participants underwent MRI and PET scans

Physical Activity and Cognitive Functioning

		Moderate (%)			Sedentary (%)		
		R	Partial R (Age)	Partial R (Age and PPVT)	R	Partial R (Age)	Partial R (Age and PPVT)
Executive Functioning	Cat & Dog Stroop	-0.361**	-0.366*	-0.295	0.331*	0.423**	0.394*
Episodic memory	Rivermead	0.453**	0.269	0.177	-0.348*	-0.291	-0.23
	Free & Cued Recall	0.317*	0.071	-0.032	-0.213	-0.246	-0.186
Verbal Fluency	Verbal Fluency	0.364**	0.262	0.167	-0.197	-0.150	-0.056
Visuospatial	Block Design	0.333*	0.2	0.07	-0.310*	-0.239	-0.158
Motor Planning & Control	Purdue Pegboard	0.458**	0.317*	0.258	-0.114	-0.046	0.023
Dementia	DSME	0.444**	0.257	0.129	-0.291*	-0.172	-0.038
	DLD	-0.459**	-0.286**	-0.188**	0.469**	0425**	0.407**

Measures: Cat & Dog stroop: switch error score. Rivermead: total score of Picture Recognition subtest, Rivermead Behavioral Memory test. Free & Cued Recall: Summed free + cued recall score. Verbal Fluency: NEPSY Verbal Fluency for animals and food/drink (60 seconds). Block Design = summed WISC-IV Block Design and Haxby extension. Purdue Pegboard: Both hands score. DSME: Down syndrome Mental Status Examination Total score method 1. DLD:. Dementia Questionnaire for People with Learning Disabilities Sum of Cognitive score.

Results

- Pearson correlations indicated that spending more daytime in sedentary behavior was associated with worse cognitive functioning and more dementia symptoms
- Pearson correlations indicated spending daytime in moderate activity was associated with better cognitive function and less dementia symptoms
- There was not a significant association between sedentary or moderate daytime activity and Aβ

Discussion

- It is possible that physical activity has a protective effect against declines in cognition with aging in DS
- Future longitudinal analyses are needed to examine the potential timeordered moderating effect of physical activity on the association between Aβ accumulation and cognitive decline in DS

References and Funding

Hartley, S. L., Handen, B. L., Devenny, D., Mihaila, I., Hardison, R., Lao, P. J., . . . Christian, B. T. (2017). Cognitive decline and brain amyloid-β accumulation across 3 years in adults with Down syndrome. *Neurobiology of Aging,58*, 68-76.

Nation, D., Hong, S., Jak, A., Delano-Wood, L., Mills, P., & Bondi, M. (2011). Stress, exercise, and Alzheimer's disease: A neurovascular pathway. *Medical Hypotheses*, 76(6), 874-854.

Hithersay, R., Hamburg, S., Knight, B., & Strydom, A. (2017). Cognitive decline and dementia in Down syndrome. *Current Opinion in Psychiatry*, *30*(2), 102-107. Funding: NIA U01 AG016976, NICHD U54 HD090256

